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ABSTRACT 

One of the main problems faced by university students is to create 

and manage the semester course plan. In this paper, we present a 

course enrollment recommender system based on data mining 

techniques. The system mainly helps with students’ enrollment 

decisions. More specifically, it provides recommendation of 

selective and optional courses with respect to students’ skills, 

knowledge, interests and free time slots in their timetables. The 

system also warns students against difficult courses and reminds 

them mandatory study duties. We evaluate the usability of 

designed methods by analyzing real-world data obtained from the 

Information System of Masaryk University. 

Keywords 

Course enrollment recommender system, student performance, 

prerequisites, university information system. 

1. INTRODUCTION 
Recommender systems can be used in different fields including 

educational environment. Such systems are mainly focused on 

providing high educational standard and try to enhance the 

process of teaching and learning [13]. They help with searching 

for suitable web resources [8], recommend good solutions to 

improve students’ knowledge [4], or analyze data obtained from 

quizzes and provide a feedback to instructor to modify a quiz [9]. 

Nowadays, researchers also try to improve personalized searching 

for beneficial courses. The aim of several projects was to select 

courses in order to obtain good exam results [12] or recommend 

elective course modules based on previous students’ enrollments 

using collaborative filtering techniques [6]. Other option is to 

utilize association rules [1] or ant colony optimization [11]. 

In the last few years, recommendations became more complex. 

Besides selecting passable courses, it is essential to recommend 

beneficial courses [3]. The suitability of courses was determined 

by the importance in all fields of the university, the ratio of 

connectivity among courses and by the importance in the 

student’s field of study. Association rules were utilized for 

searching relationships between courses. Another approach was 

presented in [7]. To graduate, all defined blocks of courses must 

be completed by finishing a pre-defined number of courses. They 

utilized a flow algorithm to find the minimal set of courses that 

students have to pass. 

In this paper, we present a pilot version of the course enrollment 

recommender system designed at the Faculty of Informatics 

Masaryk University. All methods were validated on data 

originated from the Information System of Masaryk University 

(IS MU). The data contain information on courses, templates 

defining the mandatory and selective courses, students, study-

related attributes, and social behavior data. The designed methods 

predict students’ final grades and recommend them interesting 

courses with respect to their skills, interests, and free time-slots in 

the timetable. 

2. COURSE ENROLLMENT 

RECOMMENDER SYSTEM 

2.1 Motivation 
All students have to follow the obligations and principles stated 

by their university. Especially at the beginning of the study, it is 

hard for students to cover all the mandatory duties. At Masaryk 

University, all semesters are preceded by a course enrollment 

process. All active students have to enroll a sufficient number of 

courses to achieve at least the minimal pre-defined amount of 

credits. If they do not reach the minimum limit, they cannot 

proceed to the next semester. Students have to pass many courses 

before finishing their studies successfully. All mandatory courses 

must be completed. Students have to also pass several selective 

and optional courses. Analyzing the enrollment statistics, we 

found out that students prefer interesting and passable courses. 

Universities usually offer a large number of courses and it is 

difficult for students to be familiarized with all of them. They are 

forced to search through the entire course catalog, read many 

abstracts and syllabi, and compare a large amount of success rate 

statistics. Naturally, they often discuss courses with other students 

who have their own personal experiences. Obviously, the 

decisions they have made during the course enrollment process 

could significantly influence the whole study progress and the 

final result. 

2.2 System Overview 
The current version of the recommender system monitors the 

number of credits of enrolled courses to ensure successful 

progression to the next semester. It also reminds them to enroll all 

mandatory courses. Selective and optional courses are 

recommended according to the student’s performance and 

interests with respect to free time slots in students' timetables. The 

system clarifies the decisions to students using notifications. The 

system also warns against enrolled courses that usually cause 

problems to students with similar characteristics. If the system 

identifies a difficult course in the student’s enrollment, it informs 

the student about the potential issue. It allows students to focus 

more on this course or to revise the enrollment decision. Students 

can also assess each recommendation whether the recommended 

courses were interesting and adequately difficult. Based on these 

assessments, the recommendation algorithms will be modified in 

order to enhance the relevance of the further recommendations. 

3. COURSE TEMPLATES 
At our university, templates represent tree-like definitions of 

mandatory and selective courses for each field of study. The 

system allows checking the requirements that a student has 

already accomplished. The completed courses/nodes are marked 

with a green ring (o) and the uncompleted courses/nodes are 

marked with a red cross (x). 

We examined 67 templates defining the study requirements for 

active students in the years of 2010-2013 at Faculty of 

Informatics. An example of a template can be seen in Figure 1.  
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Figure 1. Template of mandatory and selective courses 

However, the structure of the templates is often more 

complicated. Each node defines how many child nodes have to be 

completed (all, defined by the number of credits, or defined by the 

number of children). The template does not enforce in which 

semester courses should be enrolled. 

3.1 Which courses do students have to pass 

before enrolling a certain course? 
Some courses have prerequisites that define what a student must 

meet before he or she can enroll in a certain course. At our 

university, prerequisites are composed of terms p1 … pn that are 

associated with logical operators AND(&&), OR(||). A term pi can 

be a course or a compound term. Prerequisites can be transformed 

into the template subtree by the following rules: 

 pi && pj → new node containing pi and pj with the rule of 

fulfillment: all nodes 

 pi || pj → new node containing pi and pj with the rule of 

fulfillment: at least one of nodes 

 

Figure 2. PA211 prerequisites: PV210 && (PA159 || PA191) 

&& PV065 

Example of such transformation can be seen in Figure 2. Each 

template could be extended by prerequisites courses for students 

to be able to count on them when creating their study plans. 

3.2 When do students have to enroll a certain 

course? 
Students can decide in which semester they enroll in a certain 

course. All graduate students that completed the template 

requirements were selected and the semester in which the most of 

them enrolled in the particular mandatory course was calculated 

by Algorithm 1. Therefore, we remind courses in the proper 

semesters with respect to students’ completed semesters. 
 

Algorithm 1. Semester Selection 

Function select_semester(course, template): 

sem_max = {sem  semesters | sem2: number_students (sem2, 

course, template) > number_students (sem, course, template)} 

if (|sem_max| == 1) then 

return sem_max[0]; 

else if (|sem_max| > 1) then 

 return min(sem_max); 

else 

 return 1; 

end if; 

Function number_students(semester, course, template): 

return the number of students having completed the given 

template  enrolled in the given course in the specific semester; 

3.3 Which courses are passable for a certain 

student? 
We focused on the problem of predicting the final grade at the 

beginning of the semester with the emphasis on identifying 

unsuccessful students. The following grade scale was used: 1 

(excellent), 1.5 (very good), 2 (good), 2.5 (satisfactory), 3 

(sufficient), 4 (failed or waived). The value 4 represents students’ 

failure; the others represent a full completion. 

We present two different approaches in [2]. Both approaches are 

validated on 138 courses which were offered to students of the 

Faculty of Informatics of Masaryk University between the years 

of 2010 and 2013. The first approach is based on classification 

and regression algorithms that search for patterns in study-related 

data and also data about students' social behavior. We prove that 

students’ social behavior characteristics improve prediction for a 

quarter of courses. The second approach is based on collaborative 

filtering techniques. We predict the final grades based on previous 

achievements of similar students. We also present the novel 

approach how to find out which approach is better for which 

courses. Finally, we are able to correctly identify half of all 

failures (that constitute less than a quarter of all grades) and 

predict the final grades only with the error slightly higher than one 

degree in the grade scale. 

Due to the prediction error, we decided to lower the granularity of 

predictions to the following three classes: excellent (1, 1.5), good 

(2, 2.5), and bad (3, 4) to prevent the recommendation of difficult 

courses. As it can be seen in Table 1, the mean absolute error was 

below 0.5 and due to the high value of sensitivity the most of 

unsuccessful students were revealed.  

The approaches are beneficially utilized in the presented course 

enrollment recommender system to warn students against difficult 

courses and to recommend only passable optional courses. 

Courses with predicted grade better than bad grade are considered 

as passable for a student.  

Table 1. Prediction Evaluation on Test set 

Task MAE Sensitivity 

Grade prediction 0.609 0.436 

Excellent / good / bad prediction 0.474 0.899 
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4. SELECTIVE COURSES 
Students can select different sets of selective courses from the 

template with respect to their skills and the course content. They 

have to select enough courses to fulfill the node requirements. We 

were interested in the student behavior, e.g. information about the 

most preferred courses. 

4.1 Designed Recommendation Methods 
We defined a course c for a student a as interesting by the 

following function: 

f (a, c) { 

1 if the student a attended course c or marked it as   

favorite 

0 otherwise 

This characteristic defined the student's interest in the course. 

Therefore, each student can be characterized by a set of his or her 

interesting courses. We designed the following 4 algorithms to 

recommend courses:  

S1. The most selected courses by students with the same 

template. We were interested in the student behavior, e.g. 

information about the most preferred courses. We computed 

the most frequent path of graduate students in the template. 

We were inspired by a simple ant colony algorithm and 

marked each node with the number of students that passed 

through. The path was computed by universal path finding 

Algorithm 2. 

S2. Courses enrolled by similar students.  We calculated the 

similarity between sets of interesting courses for each student 

and all graduate students that already completed the 

template. We utilized Jaccard’s coefficient. For each student, 

we selected the most similar students and recommended their 

courses. We were searching for the proper size of the 

neighborhood and evaluated n  [1; 25]. When we sorted the 

courses in the list by their frequency of occurrence in similar 

student’s lists, we also explored how many of them were 

suitable to be recommended. We examined x  [1; 10]. 

S3. Courses taught by favorite teacher. Students’ interesting 

courses were examined and favorite teachers were revealed. 

We considered all course lecturers and only student’s tutors. 

The teacher’s popularity was defined as the sum of all his or 

her courses which were considered as interesting. 

Considering the teacher’s popularity, we recommended other 

teacher’s courses if his or her popularity was above the 

threshold (2). 

S4. Courses enrolled by friends. We examined students' social 

behavior characteristics and their mutual cooperation. We 

focused on statistical data that represented the interaction 

among students: explicitly expressed friendship, posts and 

comments in discussion forums, e-mails statistics, 

publication co-authoring, or files sharing. This information 

served as the basis for computing social ties among students 

by means of a sociogram [2]. From this sociogram, we were 

able to reveal friends ties among students. We recommended 

courses that friends considered as interesting and belonged to 

the template. 

The algorithms also observed the following rules: 

 Courses recommended for a particular student were limited 

to courses that should be enrolled in the certain semester: 

                                        

Student’s semester was defined as the number of commenced 

semesters and the course’s semester was defined as the 

semester in which other students usually enrolled in the 

course calculated by Algorithm 1. 

 We also did not recommend courses that belonged to the 

subtree of the template which students had already 

completed. 

 Only courses that could be enrolled in the actual semester 

were recommended. 
 

Algorithm 2. Finding Path in Template 

Function process_node (node, template, student): 

children ← children of the node; 

for each child in children do 

unless (child_computed) then 

      process_node(child, template, student); 

   end if; 

end for; 

path; # calculated path 

sort children in descending order by the value in the node; 

for each child in children do 

path ← child; 

  if (node_fulfilled(node, student)) then 

     return path; 

  end if; 

end for; 

Function node_fulfilled (node, student): 

if (the given node is fulfilled by the given student) then  

return true;  

else  

return false; 
 

4.2 Recommendation Methods Evaluation 
We can assume that students are familiar with the offer of 

selective courses. Therefore, offline experiments [10] can be 

suitable approach to evaluate previously mentioned algorithms. 

All students that enrolled in the semester autumn 2014 and did not 

complete their templates were selected: 1,444 students in total.  

4.2.1 Settings for the algorithm S2 
Firstly, we had to evaluate suitable settings for the algorithm S2. 

Our task was to select suitable courses for students and 

subsequently detect if they enrolled in them or not. Therefore, the 

suitable evaluation metrics were precision and recall. To find a 

balance between precision and recall, the F1 score was also 

calculated. 

 
Figure 3. Relationship among the size of the neighborhood n, 

number of selected courses x and the value of F1 score 
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We selected 90% of examined students and calculated the F1 

score of the recommendations. Figure 3 shows the relationship 

among variables n, x, and the value of F1. Based on these 

findings, the following setting was selected for algorithm S2 as 

the most suitable: n = 8, x = 5. This conclusion was also verified 

on the test set (the rest 10% of students). 

4.2.2 All algorithms’ evaluation 
We utilized all previously described algorithms to recommend 

courses for each student. The coverage determines the percentage 

of students for whom we were able to recommend at least one 

course. 

Table 2. Results of selective courses recommendation 

Algorithm S1 S2 S3 S4 

Coverage 0.97 0.63 0.60 0.54 

Offered courses 2.97 4.81 3.85 4.43 

Enrolled courses in the 

semester autumn 2014 1.63 2.08 1.81 1.88 

Enrolled courses anytime 2.82 3.15 2.49 2.85 

Precision 0.81 0.56 0.48 0.47 

Recall 0.55 0.42 0.28 0.39 

F1 0.66 0.48 0.35 0.43 

Rank 1 2 4 3 

The coverage of approaches differs as it can be seen in Table 2. 

S1 covered almost all students. In contrary, the rest of approaches 

recommended courses for only 60% of selected students. The 

average number of courses offered by each algorithm can be seen 

in the second row. Algorithms recommended 3-5 courses on 

average. The average number of courses that students really 

enrolled in autumn 2014 can be seen in the third row. Because the 

university does not define when students have to enroll courses, 

we extend the searching for enrollment also to the next semesters. 

The average number of courses that students really enrolled 

anytime from autumn 2014 till now can be seen in the fourth row. 

As it can be seen, the number of enrolled courses almost doubled 

in all cases. Finally, we also calculated precision and recall for all 

algorithms. The algorithm S1 reached the best results.  

4.2.3 Which courses are selected the most often? 
H1: We supposed that students select easier selective courses. 

For finding the easiest way to complete the template, we assessed 

each course using its success rate (the percentage of successful 

students to all students in the course). However, we had to 

penalize courses with a small number of students and also the 

courses with smart students only (with excellent average grade). 

Therefore, the adjusted success rate (ASR) was defined as: 

                   
   

       
 

where CSR defined the course success rate, ESAG defined the 

average grade of enrolled students, NES defined the number of 

enrolled students in a course, and MAX_ENR was a constant for 

the template and defined the maximum number of students 

enrolled in any course from the template. We calculated the 

minimal adjusted success rate of courses that have to be passed in 

the subtree for each node of the template. Subsequently, we 

employed the Algorithm 2 that selected the easiest courses till the 

node requirements were met.  

For each template t  T we constructed the easiest path (EP) and 

also the most frequented path (MFP). Both paths can be 

represented as a set of selected courses on the path. Jaccards' 

coefficient (JC) was calculated to compare these sets of courses. 

The similarity of paths was 0.8 on average for all templates. 

∑             

   
     

H1 was confirmed. Correlation of EP and MFP over all templates 

confirmed our hypothesis that students usually select easier 

selective courses. 

5. OPTIONAL COURSES 
To fulfill all study requirements, students have to obtain the pre-

defined number of credits in their studies. Except credits obtained 

from mandatory and selective courses, they have to select optional 

courses. Optional courses for each student were defined as courses 

that do not belong to the student's template. 

5.1 Designed Recommendation Methods 
We utilized the same methodology as described in Section 4 for 

recommendation of selective courses. The main difference was 

that algorithms did not restrict courses from templates. The 

courses recommended by algorithms were limited to only passable 

courses (the predicted grade was not bad) according to the method 

introduced in Section 3.3. 

S1. The most selected courses by students with the same field 

of study. All optional courses of all students of a certain field 

of study were selected. The number of students that were 

interested in each course was calculated and the sorted list of 

all courses based on the calculated value was created from 

the most interesting. 

S2.  Courses enrolled by similar students. We computed the 

student similarity with all active students and also students 

graduated in the last five years. The revealed courses were 

sorted into a list by the number of occurrences in similar 

students’ sets of optional courses. 

S3. Courses taught by favorite teacher. Courses were sorted 

into a list in decreasing order by the popularity of a teacher. 

S4. Courses enrolled by friends. Courses were sorted into a list 

by the number of occurrences in friends’ sets of optional 

courses. 

5.2 Recommendation Methods Evaluation 
As a contrary to the selective course recommendation, we 

supposed that students are not familiarized with all the optional 

courses. Therefore, the offline experiments were not sufficient 

evaluation technique in this case and we had to conduct a user 

study [10]. We contacted only selected group of students to 

request them to assess our recommendations. 

We could approach 607 students enrolled in one of our courses in 

the last semester. Considering the number of students and 

expecting the lower response rate of students, we selected 5 top 

rated courses by each algorithm for each student. The coverage of 

approaches when the algorithm found at least one course to offer 

is presented in Table 3 in the first row. Only for a half of students, 

we revealed friends who could inspire students with interesting 

courses. The average number of offered courses by each algorithm 

can be seen in the second row. The approach which uses social 

ties (S4) offered only 4 courses on average. 

In our experiment, we offered 10 courses at maximum selected 

using the 2 our algorithms Si and Sj for each student. We sorted 

the students in the list by their average grade in order to be 
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independent of students’ characteristics and nearly randomly 

selected 2 algorithms that offered its top 5 courses each at 

maximum to students. We balanced the number of occurrence of 

each algorithm due to the low coverage of S4. We also merged the 

list of courses of Si and Sj in order to not prioritize one of them in 

the following order: Si1, Sj1, Si2, Sj2, Si3, Sj3, Si4, Sj4, Si5, and Sj5. 

When both algorithms selected the same course, the course 

appeared only once in the list. The assessment of the course was 

added to results for both algorithms. 

Table 3. Algorithms coverage 

Algorithm S1 S2 S3 S4 

Coverage 1 1 0.96 0.49 

Offered Courses 4.98 4.98 4.47 4.02 

Subsequently, students were asked for assessing the 

recommendation during their course enrollment process to 

increase the possibility of their reaction. Students could mark 

courses using the following attributes: like, do not like or leave it 

unanswered. Overall, 172 students responded. The most of them 

responded in one week since the invitation (see Figure 4).  

 

Figure 4. Students’ reaction period 

The distribution of students’ reactions is shown in Figure 5. The 

best recommendation was offered by the algorithm S2. The 

algorithm is based on the similarity of students’ sets of interesting 

courses. 

 

 

Figure 5. Assessed courses 

The number of students assessed (NSA) our algorithms was 

almost in balance. Each student was included twice: for each of 

algorithms that assessed. As it can be seen in Table 4, we obtained 

more assessments of courses inspired by friends’ selections (S4). 

It can mean that students with more social ties in the system are 

more active. We omitted recommendations that were not assessed.  

For all algorithms we obtained enough assessments to be able to 

properly evaluate them. We utilized the same evaluation metrics 

as for selective courses besides recall because we could not 

compute false negatives. On average for all algorithms, students 

liked 2-3 of 4-5 offered courses. 

Table 4. Algorithms evaluation 

Algorithm S1 S2 S3 S4 

NSA 79 79 82 99 

Liked Courses 2.52 2.97 2.35 2.07 

Offered Courses 5 5 4.8 3.9 

Precision 0.53 0.60 0.52 0.55 

Rank 3 1 4 2 

Considering all evaluation methods, we determined the ranking of 

algorithms’ success rate. Algorithm based on similarity of 

interesting courses (S2) reached the best results. However, the 

final solution will combine all algorithms to achieve best results. 

6. RECOMMENDATIONS 
We have designed new elements for Registration Application 

which might be available to all students of Masaryk University in 

the future. The first enhancement presents the predicted difficulty 

of courses to students. The predictions are computed by the 

method described in Section 3.3. The predicted grades correspond 

to the following color: 

  xcellent grade     green color. 

  ood grade     yellow color. 

 Bad grade     red color. 

All predictions are presented as the icons of corresponding color. 

When we have no predictions, there is no icon. We try to predict 

grades of courses that students enrolled or courses that we 

recommend to them (see Figure 6). Based on these warnings, 

students can concentrate on difficult courses or revise their 

choices depending on the planned workload in the semester.  

The second improvement is the panel on the right (see Figure 6) 

where the recommended courses are presented. For each student 

we remind mandatory courses, recommend selective and optional 

courses selected by methods introduced in Sections 4 and 5, and 

also recommend their prerequisite courses. After clicking the 

wrench icon, the short explanation of each recommendation is 

displayed to increase students’ trust to the system [5].  They can 

also assess each recommendation. Based on assessments we 

continuously improve our algorithms. 

7. CONCLUSION 
We presented a pilot version of course enrollment recommender 

system that reminds students their duties, warns them against 

difficult courses and recommends them potentially beneficial 

courses. Therefore, the system helps students with their decisions 

during the enrollment process at the beginning of each semester.  

More specifically, we designed four algorithms suitable for the 

course recommendation. The first algorithm searches for the most 

frequently enrolled courses. The second algorithm utilizes 

similarities of students based on courses of their interests. The 

third algorithm recommends courses of students’ favorite 

teachers. The last algorithm calculates the social ties among 
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students and selected courses which were interested for students’ 

friends. 

The most suitable algorithm for the selective course 

recommendation was the first described algorithm. Students 

usually selected easier courses defined in their templates. In 

contrary, the best results for the optional courses recommendation 

achieved the second algorithm utilizing students’ similarities. 

However, we decided to employ all methods in the system due to 

the high students’ satisfaction with recommendations. Optional 

courses were also recommended only if we predicted that students 

could pass the course and they had free time slots in the timetable 

for the course. We validated all designed methods on data 

originated from students of the Faculty of Informatics Masaryk 

University stored in the university information system.  

We also introduced the environment that presents 

recommendations to students, offers them the explanations why 

the courses were selected, allows them to leave a feedback, warns 

them against difficult courses, and reminds them important events 

that should be accomplished, e.g. enroll in mandatory courses or 

enroll enough credits. The designed course enrollment 

recommender system will be a part of the university information 

system in the future. 
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Figure 6. Demonstration of Interface 
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